Nano 'Beads on a String' Could Advance Battery Technology
Tiny beads of silicon, about ten thousand times thinner than a piece of paper, could someday make electric vehicles travel farther on a single charge or extend the life of your laptop's battery, say University of Maryland scientists.
Rechargeable lithium-ion batteries—the kind in your phone, camera, and some hybrid cars—could become even more useful than they are today if their energy storage capacity increased. These batteries use graphite as an electrode. Silicon can store up to ten times more lithium ions than graphite, but until now, silicon structures tended to crack or break when they were used over and over.
Now, chemists and materials scientists in the College of Computer, Mathematical, and Natural Sciences and the Maryland NanoCenter have designed a tiny silicon structure for batteries that can last through more charging cycles than previous designs did. The researchers grew tiny beads of silicon on a carbon nanotube, then used a powerful microscope to watch the electrode charge and discharge.
To make the beads, YuHuang Wang, an assistant professor in the department of Chemistry and Biochemistry, and his colleagues attached part of a molecule sometimes found in food flavorings along carbon tubes less than fifty nanometers wide. Then they flooded the space with a gas containing silicon.
The organic molecule caused beads of silicon to grow on the tube. Then the researchers charged the silicon with lithium ions.
The scientists think the structure is more resilient because unlike flat silicon coatings, silicon beads grow like flexible balloons. The organic molecule that initially attracted the silicon to the tube made the silicon bond to the tube more strongly, preventing the silicon from breaking apart.
As the beads were charged by the lithium, they grew and shrank without cracking or ripping. The beads expand outward from the nanotube, but not toward each other, so they can be placed close together along the nanotube. Watch a video.
The research was published this month in the journal ACS Nano, and was supported by the NEES Energy Frontier Research Center and NSF.
Contact: Martha J. Heil, Maryland NanoCenter, mjheil@umd.edu, 301-405-0876
A Beaded-String Silicon Anode Sun et al.
ACS Nano, DOI:10.1021/nn4001512 Accepted Feb. 12, 2013