When Frogs Die Off, Snake Diversity Plummets

University of Maryland biologist Karen Lips helps find a significant drop in snake diversity following amphibian declines from chytrid fungus

Since 1998, scientists have documented the global loss of amphibians. More than 500 amphibian species have declined in numbers, including 90 that have gone extinct, due to the fungal pathogen Batrachochytrium, commonly known as chytrid.

Frogs and their eggs are an important source of nutrition for many snakes. This tiny blunt-headed tree snake (Imantodes) snags a meal from of frog eggs in the Panamanian forest. Photo Credit: Karen Warkentin. Click image to download hi-res version.

A new study by researchers from the University of Maryland and Michigan State University shows, for the first time, the ripple effects of amphibian losses on snakes. The results, published in the February 14, 2020, issue of the journal Science, reveal that after chytrid swept through a remote forest in Panama, decimating frog populations, the number of snake species scientists detected declined dramatically, causing the snake community to become more homogenized.

“This study highlights the invisibility of other changes that are occurring as a result of losing amphibians,” said Karen Lips, a professor of biology at UMD and a co-author of the study.

Many snakes rely on frogs and frog eggs as part of their diet, so the researchers expected a decline in frogs to impact snake populations. But the slithery reptiles are notoriously cryptic and difficult to study in the wild. How snakes fare following a chytrid epidemic was mostly a matter of conjecture before this study.

Lips and her colleagues compared seven years of survey data collected in a national park near El Copé, Panama, before the 2004 chytrid outbreak caused mass amphibian die-off, with six years of survey data collected after the die-off.

“Comparing the after with the before, there was a huge shift in the snake community,” Lips said. “The community became more homogeneous. The number of species declined, with many species going down in their occurrence rates, while a few species increased. Body condition of many snakes was also worse right after the frog decline. Many were thinner, and it looked like they were starving.”

The researchers cannot say exactly how many snake species declined because snake sightings are rare in general. Some species were only seen once in the pre-chytrid surveys. The researchers could not confirm that a species had disappeared just because it was absent in the post-chytrid surveys. However, over half of the most common snakes (those observed more than five times throughout the total study) had declined in occurrence rates after the frog die-off. Further statistical analysis of the data confirmed a considerable drop in species diversity.

Researchers are confident the changes they observed in the snake community were due to the loss of amphibians and not some other environmental factor. The study area is in a national park with limited impacts from habitat loss, development, pollution or other phenomena that might affect snake populations directly. The remoteness of the El Copé research site and the fact that Lips had been conducting annual surveys there in the years prior to the chytrid epidemic combined to provide a rare window into the rapid changes in an ecosystem following the catastrophic loss of amphibians.

“This work emphasizes the importance of long-term studies to our understanding of the invisible, cascading effects of species extinctions,” Lips said. “Everything we watched changed after the frogs declined. We have to know what we are losing, or we run the risk of undermining effective conservation.”

###

In addition to Lips, authors include UMD alumnae Elise Zipkin (Ph.D. ’12, biological sciences), now at Michigan State University, and Graziella DiRenzo (Ph.D. ‘16, biological sciences) now at the U.S. Geological Survey.

The research paper, “Tropical snake diversity collapses after widespread amphibian loss,” Elise F. Zipkin, Graziella V. DiRenzo, Julie M. Ray, Sam Rossman, Karen R. Lips, was published in the February 14, 2020, issue of the journal Science.

This work was supported by the National Science Foundation (Award Nos. EF-1702635, PRFB-1611692, DEB-0717741, DEB-0645875, IBN-0429223, IBN-0429223, and IOB-0519458). The content of this article does not necessarily reflect the views of this organization. 

Writer: Kimbra Cutlip

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences
The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 10,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and nine interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $250 million.